

Safer cancer drugs are now one step closer after research we've funded shone a light on the way some treatments damage the heart.
Modern drugs can be very effective at treating cancer and have led to greatly improved survival rates. However, some cancer treatments can cause damage to the heart, or cardiotoxicity. This damage can present in a range of ways, from a slight change in the heart’s pumping ability to debilitating heart failure. But the ways in which these drugs cause damage have remained elusive.
Now, a ground-breaking international study published in the journal Science Advances has identified proteins in the blood that are linked to an increased risk of developing heart diseases, including heart failure (where your heart can’t pump blood around your body as well as it should), and which are also affected by drugs used in cancer treatment.
Improving cancer treatments
The team say that their findings can explain how cancer drugs cause their damaging effects on the heart and could help to identify those at increased risk. In the long run, they believe this will help to improve cancer treatments, so that they don’t cause this damage in the first place.
The researchers first performed a genome-wide association study, searching through the DNA of nearly 37,000 people without heart disease enrolled in the UK Biobank study. This identified genetic variants linked to changes to the structure and function of the pumping chambers of the heart – the ventricles.
Our genes contain the instructions needed to make proteins, the building blocks of the body. Using a technique called Mendelian Randomisation, the researchers then pinpointed 33 proteins, coded for by these genetic variants, that are present in the blood and associated with the risk of developing several heart diseases. These included different types of heart failure, and atrial fibrillation (a common abnormal heart rhythm which greatly increases the risk of stroke). Crucially, many of these proteins are the targets of drugs currently used to treat cancer.
Helping to accelerate future drug development
Dr Floriaan Schmidt, Principal Research Fellow in Population Science & Experimental Medicine at University College London, led this research. He said:
“The proteins identified in our study will help to accelerate future drug development, offering scientists a blueprint for new treatments for both cancer and heart diseases. This can help them to be more confident of the effects of the drugs that they design – whether that’s shrinking tumours without causing damage elsewhere or improving the heart’s pumping action.”
Professor Sir Nilesh Samani, our Medical Director, said: “While there have been advances in treating cancer, one of the consequences has been a risk of heart damage from these drugs.
“This research points the way towards developing safer and more refined drugs so that, one day, worries about developing heart problems after cancer treatment might be a thing of the past.”
This research was also supported by the UKRI/NIHR Multimorbidity fund Mechanism and Therapeutics Research Collaborative and the Rosetrees Trust.